Bismut formula for Lions derivative of distribution-path dependent SDEs

نویسندگان

چکیده

To characterize the regularity of distribution-path dependent SDEs in initial distribution which varies as probability measure on path space, we introduce intrinsic and Lions derivatives for measures Banach spaces, prove chain rule derivative Banach-valued random variables. By using Malliavin calculus, establish Bismut type formula functional solutions to with drifts. When noise term is also so that invalid, asymptotic formula. Both non-degenerate degenerate noises are considered. The main results this paper generalize improve corresponding ones derived recently literature classical memory McKean-Vlasov without memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Bounds for the Densities of Solutions of Sdes with Measurable and Path Dependent Drift Coefficients

We consider a process given as the solution of a stochastic differential equation with irregular, path dependent and time-inhomogeneous drift coefficient and additive noise. Explicit and optimal bounds for the Lebesgue density of that process at any given time are derived. The bounds and their optimality is shown by identifying the worst case stochastic differential equation. Then we generalise...

متن کامل

Forward Difference Formula for the First Derivative

Study the interplay between roundoff error and truncation error in using the forward difference formula for the first derivative. Directory • Table of

متن کامل

The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo methods in finance

We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and ”payoff” functions depending on the process at multiple future times. In the spirit of Fournié et al [14] and Davis and Johansson [10] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of...

متن کامل

Path-wise solutions of SDEs driven by Lévy processes

In this paper we show that a path-wise solution to the following integral equation Yt = ∫ t 0 f(Yt) dXt Y0 = a ∈ R d exists under the assumption that Xt is a Lévy process of finite p-variation for some p ≥ 1 and that f is an α-Lipschitz function for some α > p. There are two types of solution, determined by the solution’s behaviour at jump times of the process X, one we call geometric the other...

متن کامل

Euler Summation Formula for Path Integrals

We present and comment on some details of a new analytical method for systematic improvement of the convergence of path integrals of a generic N -fold discretized theory. The new methods represents a Euler summation formula for path integrals. Keeping the first p terms in this formula improves convergence of path integrals to the continuum limit to 1/N. We have given explicit calculations up to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.02.019